2022

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer
in their own words as far as practicable.

GROUP - A

1. Answer all questions.

[1 × 8

- (a) What is the basic value of homoannular conjugated diene according to Woodward-Fieser rule?
- (b) Convert 200 nm to micrometer.
- (c) Which of the following diatomic molecules don't absord in the infra-red region :

(HCI, N2, CIBr, O2)

- (d) What is the range of IR radiation?
- (e) Write the structure of TMS.
- (f) What do you mean by base peak in mass spectroscopy?

- (g) Give two examples of disaccharide carbohydrates.
- (h) Define Epimers with an example.

GROUP - B

- Answer <u>any eight</u> of the following questions within two to three sentences each.
 - (a) What is auxochrome? Give an example.
 - (b) Calculate the energy associated with a radiation having wavelength 300 nm.
 - (c) What do you mean by over tones?
 - (d) Give any three important applications of IR spectroscopy.
 - (e) Name the various types of bending vibrations.
 - (f) How many NMR signals are formed in n-propyl alcohol?
 - (g) Caculate the λ_{max} of the following compound :

(h) What do you understand by "Nitrogen rule" in mass spectroscopy?

- (i) Write the molecular formula of Fructose and Lactose.
- (j) What are anomers? Give an example.

GROUP - C

- 3. Answer any eight questions within 75 words each. [2 × 8
 - (a) Describe the effect of hydrogen bonding on ultra-violet absorption.
 - (b) Caculate λ_{max} using Woodward-Fieser rule :

- (c) Can you distinguish the type of hydrogen bonding by IR spectroscopy? Explain with reason.
- (d) What do you mean by Fingerprint region?
- (e) Why TMS is used as a reference standard in NMR spectroscopy?
- (f) Define coupling constant (J).
- (g) What do you mean by shielding and de-shielding of a nucleus?

- (h) What is Mc Lafferty rearrangement?
- (i) What are reducing and non-reducing carbohydrates? Give one example of each.
- (j) Fructose contains a keto group but still it gives silver mirror test with Tollen's reagent. Explain.

GROUP - D

Answer any four questions in 500 words each.

- 4. Discuss $\pi \to \pi^*$ and $n \to \pi^*$ electronic transition occurred in UV-visible spectroscopy. How do the polar solvent affect the above two electronic transitions?
- 5. Explain bathochromic and hypsochromic shifts with examples.

6. Discuss different types of molecular vibrations involved in IR spectroscopy. [6]

7. Write short notes on within 250 words each.

[3 × 2

[6

- (a) Fermi resonance
- (b) Hooke's law
- 8. Explain the basic principle of NMR spectroscopy.

- (a) What do you mean by parent peak and metastable peak?
 [4
 (b) Predict the mass spectra of n-butane.

 10. Write short notes on within 250 words each.
 - (a) Killiani-Fischer synthesis
 - (b) Mutarotation

[6

No. of Printed Pages: 4

1.

2022

Time - 3 hours

Full Marks - 60

Answer **all groups** as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer in their own words as far as practicable.

GROUP - A

Ans	wer <u>all</u> questions and fill in the blanks as required. [1 × 8
(a)	The light of a firefly is an example of
(b)	A mole of quanta is called
(c)	Number of nodes in wave function of particle in one dimensional box when $n = 1$ is
(d)	Non-degenerate eigen functions of a Hermitian operator are to each other.
(e)	The bond order in O ₂ molecule is
(f)	The number of degrees of freedom for benzene is
(g)	Out of benzene and quinone has more easily promoted electrons.

(h) $\hat{A}f(x) = m f(x)$ What is the eigen values of the eigen function f(x) where \hat{A} is the operator.

GROUP - B

- 2. Answer any eight of the following questions within two to three sentences each. [1½ × 8
 - (a) State Beer's law.
 - (b) What is photosensitization?
 - (c) How many fundamental vibration frequencies are there in CO_2 ?
 - (d) What is force constant?
 - (e) What is the significance of + and sign in orbitals?
 - (f) Find the value of the operator $\frac{\partial^2}{\partial x^2}$ for the function $5x^2 + y + 3$.
 - (g) What is a π^* molecular orbital?
 - (h) Write the expression for px operator.
 - (i) What is zero point energy?
 - (j) Write the selection rule for two rotational states of a diatomic molecule.

GROUP - C

- 3. Answer any eight questions within 75 words each. [2 × 8
 - (a) What is Hamiltonian operator?
 - (b) Write the condition of normalization of two wave functions.
 - (c) What are commutator operators?
 - (d) Write the molecular orbital energy level diagram of N_2^+ .
 - (e) What are non-bonding molecular orbitals?
 - (f) What is rotational constant of diatomic molecule? Write its unit.
 - (g) What is Morse potential?
 - (h) What are Stoke's lines and anti-Stoke's lines?
 - (i) What is Raman shift?
 - (j) What is phosphorescence?

GROUP - D

Answer any four questions in 500 words each.

- What is quantum mechanical operator? Write the postulates of quantum mechanics.
- 5. Discuss the degeneracy of a particle in three dimensional box.

[6

2022

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer
in their own words as far as practicable.

GROUP - A

1.	Ans	wer <u>all</u> questions and fill in the blanks as required. [1 × 8
	(a)	A polymer obtained from more than one type of monomer molecules is known as
	(b)	The number of repeating units in a polymer molecule is called
	(c)	What is the role of Per acetic acid in polymerization process ?
	(d)	Between ortho and para substituted polymers, which has lower $T_{\rm m}$ value ?
	(e)	Osmotic pressure method is used to determine the weight of a polymer.
	(f)	Write the relationship between T and T

- (g) What are the monomers of Bakelite?
 - (h) Which initiator is used during the synthesis of PVC from vinyl chloride?

GROUP - B

- Answer <u>any eight</u> of the following questions within two to three sentences each.
 - (a) What are thermosetting polymers? Give an example.
 - (b) Define functionality with an example.
 - (c) Write the name of any three free radical initiators used in polymerization process.
 - (d) What is the chemical composition of Zeigler-Natta catalyst? In which polymerization process, it is required?
 - (e) Define configuration of a polymer.
 - (f) What is \overline{M}_{w} ? Give the equation to derive \overline{M}_{w} .
 - (g) What is glass transition temperature?
 - (h) Write any two factors that affect T_g of a polymer.
 - (i) Write any two differences between LDPE and HDPE.
 - (j) Give two examples of biodegradable polymer.

GROUP - C

- 3. Answer any eight questions within 75 words each. [2 × 8
 - (a) How polymers can be classified on the basis of intermolecular forces?
 - (b) Define degree of polymerization.
 - (c) What is poly dispersity index ? Explain : Haemoglobin is a monodisperse protein.
 - (d) What do you understand by number average molecular weight of polymers?
 - (e) What is the effect of bulky group present in a polymer on the crystallinity?
 - (f) How cis and trans configuration of polymers affect T_g value?
 - (g) What is copolymer? Give an example.
 - (h) How is Nylon-6,6 prepared?
 - (i) What is the role of doping in polymer science?
 - (j) Give the preparation of poly urethanes.

GROUP - D

Answer any four questions in 500 words each.

4. What is tacticity of a polymer? How polymers are classified depending on tacticity?

5.	 Explain the mechanism of addition polymerization via free route by giving example. 		
6.	Write short notes on within 250 words each.		
	(a) Crystalline polymers and Amorphous polymers		
	(b) Degree of cystallinity		
7.	7. Discuss the principle and method used to determine the mollar weight of a polymer by viscometry.		
8.	Briefly describe the factors that affect T _g of a polymer.	[6	
9.	Write short notes on within 250 words each.		
	(a) Silicone polymers		
	(b) PVC		
10.	10. Discuss the preparation, structure and uses of -		
	(a) Novalac		
	(b) Teflon		

2022

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer in their own words as far as practicable.

GROUP - A

Ans	wer <u>all</u> questions and fill in the blanks as required. [1 × 8
(a)	Photosynthesis in green plants requires
(b)	Michael addition reaction can be carried in presence of which green solvent?
(c)	Minamata disease is caused due to the toxicity of
(d)	CFCs are also called as
(e)	The ionic liquids are otherwise called as solvents.
(f)	Name the green reagent used for methylation reaction.
(g)	is the key intermediate in the production of Monsanto's round up herbicide.

(h) Biodiesel is an example of which of the Twelve principles of Green Chemistry.

GROUP - B

- Answer <u>any eight</u> of the following questions within two to three sentences each.
 - (a) Write any two goals of Green Chemistry?
 - (b) Name two applications of Ultrasound assisted reactions.
 - (c) What are Zeolites? Give one application.
 - (d) What is Saponification reaction?
 - (e) Which catalyst is used in Green Synthesis by avoiding harmful byproducts?
 - (f) Define e-factor.
 - (g) What is acid rain?
 - (h) Define atom economy.
 - (i) What are neat reactions?
 - (j) What is an antifoulant?

GROUP - C

Answer any eight questions within 75 words each.

[2×8

(a) Define super critical water.

- (b) Comment on "Water as a reaction solvent".
- (c) Define homogeneous and heterogeneous catalyst with examples.
- (d) Explain Diels-Alder reaction.
- (e) Write the full form of CFC and VOC.
- (f) Name two chemicals used in dry cleaning.
- (g) Write down the synthesis of adipic acid by Green method.
- (h) What is biocatalyst? Give examples.
- (i) Calculate the % of atom economy in the following reaction :

Cyclohexane +
$$Br_2$$
 CCI_4 Br

(j) What is Sustainable Development?

GROUP - D

Answer any four questions in 500 words each.

- 4. State and explain Twelve principles of Green Chemistry. [6
- Explain coupling and Friedal-Craft reactions using ultrasound technique with examples.

	187.24	e short notes on within 250 words each.	[3 × 2
6.		Bhopal Gas Tragedy	
		Biocatalysis	
7.	Usin	g green synthesis method, synthesize the following ands:	g com- [3 × 2
	(a)	Paracetamol	
		Catechol	
8.	Disc	cuss replacing smog producing and ozone depleting so	olvents. [6
9.	Exp	lain the following microwave assisted reactions in wat	ter: [3 × 2
	(a)	Hoffman Elimination	
	(b)	Methyl benzoate to benzoic acid	
10). Dis	cuss advantages and disadvantages of biocatalyst in the state of the s	in com-